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Abstract. This paper deals with the modelling of the convection processes in
high-pressure mercury arcs. Temperature and velocity fields have been calculated
by using a 2D semi-implicit finite-element scheme for the solution of conservation
equations relative to mass, momentum and energy. After validation, this model was
applied to the study of the influence of arc external parameters such as mercury
charge and tube diameter on the convective processes. It was found that stable
laminar mono-cellular convection flow occurs at low values of tube diameter for a
cylindrical burner and/or a low mercury charge. Finally, we considered in detail the
region behind the electrodes, where an accumulation of mercury is observed. The
evaluation of this amount of mercury ‘trapped’ in these regions is of prime
importance for a good description of the distribution of mercury in the burner and
for a correct evaluation of the total discharge pressure.

1. Introduction

Transport phenomena in electric arcs are responsible for
effects of considerable importance to stable operation of
the device. If the convection flow is unstable, undesirable
phenomena appear and several discharge characteristics are
affected. Elenbaas (1951) and Kenty (1938) interpreted
such instabilities observed at sufficiently high pressure as a
transition from laminar to turbulent convective flow at high
convective velocities. However, Zollweg (1977) believed
that the instability of mercury arcs can be explained as a
helical instability resulting from the self-magnetization of
the arc.

Modelling of the convection processes in high-pressure
mercury arcs has been discussed in numerous papers
including those of Zollweg (1978), Lowke (1979) and
Changet al (1990). However, to the author’s knowledge,
there is no precise quantitative description of the effect
of mass transport on the high-pressure mercury lamp,
neither in these papers nor in other references. Moreover,
except for a short paper of Weber (1986) dealing with
an experimental mapping of Hg and Xe densities in high-
pressure lamps, we looked in vain, in the literature, for an
accurate verification of the amount of mercury distributed
in the three different discharge zones: the regions above
and behind respectively the lower and higher electrodes,
and the inter-electrode volume. Obviously, the discharge
occurs practically in the region between the electrodes. So,
only the amount of mercury in this zone is considered

to be the active part of the total amount of mercury
introduced into the burner. Mercury accumulated in the
other regions can be considered as a mercury loss. Anyway,
we cannot eliminate this loss. However, a good evaluation
of the amount of mercury ‘trapped’ in these regions is of
prime importance for a good description of the mercury
distribution in the burner and for a correct determination of
the total discharge pressure.

In the case of an atmospheric pressure discharge the
flow is highly dependent on the total amount of mercury and
the current as well as on the arc tube dimensions. In fact, in
high-pressure lamps these parameters are linked to practical
constraints related to wall loading and arc tube voltage.
However, in this paper we neglect these constraints and we
consider these quantities to be completely independent of
each other. This assumption will allow us to study a large
range of mercury loadings and arc tube radii in order to
evaluate their relative importance. Furthermore, we focus
much attention on the region behind the electrodes, where
an accumulation of mercury is observed. This simulation of
arc properties is performed with a 2D code. Mass, energy
and momentum continuity equations are solved in order to
calculate transport flows. Numerical resolution is achieved
by using a finite-element semi-implicit scheme. In order to
confirm the validity of the model adopted for this study, a
comparison is made with measurements and calculations of
other authors.
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2. Description of the model

2.1. Basic assumptions

We assume an axially symmetric arc in local thermody-
namic equilibrium (LTE) and at steady state. Under such
assumptions, all discharge properties can be deduced from
the temperature distribution. Thus, the required material
functions, namely thermal and electric conductivity, spe-
cific heat of arc plasma and net emission coefficient, are
assumed to be fully described in terms of the local tem-
perature only. It is also assumed that the plasma flow is
laminar and that the electrodes are of cylindrical shape. In
this work all phenomena at the electrode surface and elec-
trode regions are omitted. Thus our model results can be
considered to be valid a few mean free paths distant from
the electrodes. We also neglect the viscous energy dissipa-
tion and we suppose that the electric field is purely axial.
We assume that the contribution of magnetic force is neg-
ligible.

2.2. The governing equations

Under these conditions, the positive column plasma
is governed by usual balance equations concerning
mass, radial momentum, axial momentum and energy
conservation. These equations in cylindrical coordinates
(r andz) are as follows.

For mass conservation
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For axial momentum conservation
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For energy conservation
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One also has the ideal gas law

p = R

M
ρT (5)

and Ohm’s law

I = 2πEq

∫ Rw

0
rσ dr. (6)

The basic variables defined by these equations
are density ρ, axial velocity vz, radial velocity vr ,
temperatureT and pressurep. The plasma material

Figure 1. Boundary conditions.

functions are viscosityη, specific heatcp, net radiative
emission U , electrical conductivity σ and thermal
conductivity κ. All these material functions are supposed
to be functions of temperature. Other quantities of these
equations are electric fieldE, gravity g, tube radiusRw,
electric currentI , elementary chargeq, atomic massM
and the ideal gas constantR.

We note that the contribution of the energy transfer
due to the velocities of electron flow was neglected in the
energy balance equation (4). The effect of this term in the
central region is small, because in this region temperature
gradients are relatively small. It does have an effect in
the region of the arc near the cathode, where temperature
gradients are relatively large. According to Lowkeet al
(1992), because this term gives a cooling effect for this
region of the arc where they expect a heating effect due to
the electron temperature being higher than the neutral gas
temperature, it is better to omit the term.

Electric conductivity, thermal conductivity and viscos-
ity included in this model are calculated by using the first
approximation of the gas kinetic theory as developed by
Hirchfelderet al (1954) assuming a Maxwellian shape for
the electron energy distribution function and the Lennard-
Jones interatomic potential. The value corresponding to a
monatomic ideal gas is used forcp (Chaseet al 1986). Fi-
nally, the net emission coefficient is calculated according
to Stormberg and Schäfer (1983). This coefficient includes
UV and visible lines as well as continuum emission from
the plasma. It is established for a parabolic radial tem-
perature profile. In this work we used an interpolation to
determine the net emission coefficient for a non-parabolic
radial profile.

2.3. Boundary conditions

The boundary conditions are taken to be similar to those
of Lowke (1979). They are summarized with reference to
figure 1, in table 1.

The experimental value,Tw, corresponding to a 400 W
commercial mercury discharge is taken for the wall
temperature (equal to 1000 K). We also suppose that this
value does not vary much with power supply. This is
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Table 1. Boundary conditions.

AH CDEF FG and BC HG and AB

vr vr = 0 vr = 0 vr = 0 vr = 0

vz
∂vz
∂r = 0 vz = 0 vz = 0 vz = 0

T ∂T
∂r = 0 T = Tw T = T (z ) T = Telc

Table 2. Discharge characteristics used by Zollweg and
Kenty.

Parameter Zollweg Kenty

Arc tube length (mm) 90 ' 170
Inter-electrode length (mm) 70 155
Internal diameter (mm) 18 33.3
Electrode length (mm) 10 ' 7.5
Electrode diameter (mm) 2 ' 5
Pressure (atm) 2.89 1.2
Current (A) 3.0 2.9
Hg loading (mg cm−1) 5.72 11.5

confirmed by using an optical pyrometer and measuring the
wall temperature of a large number of lamps (it is found
that wall temperature is almost constant within a limit of
1Tw = ±200 K. Moreover, the wall temperature is not
constant along the wall; it is higher at the top than at the
bottom. An accurate calculation of this temperature needs
a resolution of the energy balance equation near the tube
wall. Note that, in spite of the simple appearance of this
equation, a rigorous evaluation of this term may be very
difficult. For electrode temperature (Telc) we have taken a
value of 2000 K.

2.4. The numerical procedure

The partial differential equations (1)–(4) are solved by using
a finite-element scheme based on rectangular structured
elements and a variable step grid. The code has been
checked for numerical diffusion effects; in all cases
tested no significant systematic error was detected. The
calculation procedure, described in more detail elsewhere
(Charrada 1995), is outlined as follows:

(i) rectangular grid generation,
(ii) initial arbitrary values ofT , vr , vz andp are selected

throughout the whole region,
(iii) all material functions are evaluated for each node,
(iv) for a given current the electric field value is

calculated from Ohm’s law (equation (6)),
(v) radial and axial components of convective velocity

and pressure are obtained from equations (1)–(3),
(vi) new values for temperature are obtained by using

equation (4) and
(vii) the procedure is repeated from step (iii) until

convergence.

Figure 2. (a) A comparison between calculated (full line)
and measured (symbols) temperature radial profiles.
(b) The calculated axial velocity distribution on the arc axis;
symbols denote results from Zollweg’s calculations.

3. Results and discussion

3.1. Model validation

In order to confirm the validity of the model, we
compared our calculations with measurements given by
other authors. Here we only show the comparison
between our calculations and the results of Zollweg (1978)
and Kenty (1938) in the case of high-pressure mercury
discharges (characteristics given in table 2).

Figure 2(a) shows the experimental data and our
calculation results concerning the temperature profile for
the middle cross section of the positive column. We note
the good agreement between our calculation results and
experimental results. Figure 2(b) gives our results for axial
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Figure 3. The calculated temperature field for two different
amounts of mercury: (a) mHg = 10 mg and
(b) mHg = 200 mg. (c) The calculated map of the velocity
vectors in the discharge vessel. Thick arrows illustrate
qualitatively the convection pattern. Note that the arrow
grey level is in relation to the gas temperature (the blacker
the arrow the hotter the gas).

velocity distribution on the axis. Zollweg’s calculations
(Zollweg 1978) are also included in the same plot. The
agreement between these two sets of results is found to
be satisfactory. The small difference between them can

be explained in terms of differences between numerical
methods and different approaches used for the evaluation
of the plasma material functions.

As reported by Kenty, the upward convective velocity
in the centre of the middle plane of the arc tube is of
the order of 40 cm s−1; the calculations of Chang and
Dakin (1991) confirms this value. In the case of a similar
discharge we obtain from our numerical code a value of
38 cm s−1, which is in acceptable agreement with the above
values. This result is also in good agreement with the
empirical relationvz (cm s−1)= 5m0.85 (mg cm−1) given
by Fohl (1975).

3.2. Study of the influence of the total amount of
mercury

In this study the DC current value is maintained at 3.2 A.
The burner has an electrode spacing of 7.2 cm with a total
length of 9.2 cm. The arc tube diameter is 1.85 cm. The
1 cm long electrodes have a radius of 0.1 cm. These
characteristics of the electrodes have been taken the same
for all cases studied in this paper. The amount of mercury
in the burner is taken in the range 10–200 mg, varying in
steps of 10 mg.

The calculated temperature distributions for the two
extreme amount of mercury (10 and 200 mg) are shown in
figures 3(a) and (b) respectively. Constriction at the lower
electrode increases when the amount of mercury rises. We
also remark that increasing the total mercury mass in the
discharge leads to the heating of the zone behind the higher
electrode. This is explained by the fact that the gas on the
tube axis is heated because it is at the core of the arc where
the gas near the wall is cooled by conduction. The density
difference between the gas at the core and that at the arc
periphery establishes an upwind flow in the centre and a
downwind flow adjacent to the wall. Thus, the hot gas
coming out of the arc channel heats the region behind the
upper electrode. Figure 3(c) illustrates this convective flow
in the discharge vessel. The arc constriction in the lower
electrode region is caused by the cold gas from the arc
periphery coming back into the hot central channel.

The radial thermal fluxes in the median plane for
increasing mercury amounts from 10 to 190 mg (by steps
of 20 mg) are plotted in figure 4. One can see that,
when the amount of mercury increases, the radial thermal
flux decreases in the core of the arc and rises in the
periphery. This phenomenon is due to the arc broadening
with increasing total amount of mercury in the burner. The
corresponding thermal conduction loss as a function of the
amount of mercury is shown in figure 5. We note that the
axial thermal conduction can be neglected (Charrada 1995).

Convective transport of energy to the tube wall was
found to be insignificant compared to other kinds of losses,
for the amounts of mercury studied here. Figure 6 shows
the variation of the power loss by convection versus the
square of the amount of mercury. It is clearly shown that
this loss is not important even for 200 mg of mercury.
Nevertheless, convective flows in arcs are responsible for
considerably important effects concerning operating device
stability.
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Figure 4. The radial component of thermal flux versus the
amount of mercury in the burner; the amount of mercury
was varied from 10 mg (curve B) to 190 mg (curve A) by
steps of 20 mg.

Figure 5. Energy losses due to radial conduction as a
function of the amount of mercury.

As shown previously in figure 3(b), a mono-cellular
convection pattern appears in the discharge vessel. The
transition from laminar to turbulent flow is characterized by
a critical value of 1400 for the Reynolds number (Elenbaas
1951). The mean value of the latter, calculated as in
equation (7), is given in figure 7 as a function of the square
of the mass:

Re= 2

R

∫ R

0
r
ρv

η
dr. (7)

The variation in Re versus the amount of mercury is
approximated byc1 + c2m

2
Hg, with c1 and c2 constants

Figure 6. Energy losses due to convection as a function of
the amount of mercury.

Figure 7. The Reynolds number as a function of the
amount of mercury.

equal to 0.9 and 7× 10−4 mg−2 respectively. If the
validity of this formula is extrapolated to give values for
amounts of mercury that we have not yet examined, the flow
becomes turbulent for unit length mercury mass greater than
150 mg cm−1

It is very important to know how the amount of
mercury, initially introduced as a liquid into the burner,
will be distributed over the three main discharge zones
cited in the introduction of this paper. This distribution
is a result of the temperature profile in the plasma. As we
have stated, the hot gas coming out of the arc channel heats
the region behind the upper electrode. Thus, there should
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Figure 8. The variation in the amount of mercury trapped
in the electrode regions as a function of the total amount of
mercury: (N), higher electrode region and (�), lower
electrode region.

be less mercury accumulated in this region than behind the
lower one. The mass of mercury accumulated in the regions
behind each electrode as a function of the total amount of
mercury in the burner is given in figure 8.

3.3. A study of the influence of the tube diameter

In this study the current value is maintained at 3 A and
the mercury pressure is 3 atm. The confining tube has an
electrode spacing of 5 cm for a total length of 7 cm. The
arc tube diameter is made to vary in the range 1–3 cm by
steps of 0.5 cm.

In figure 9 we draw the calculated temperature
distributions for the two extreme arc tube diameters
(1 and 3 cm). Here also constriction at the lower
electrode increases when the arc tube radius increases (the
same phenomenon has been observed when the amount
of mercury increases at constant electric current and
geometry).

Convective effects are responsible for this constriction.
For a small arc tube radius the convection hardly exists, but
when the radius becomes high enough, convection does
play an important role. So, it leads to an asymmetry on
either side of the median discharge plane (the horizontal
plane midway between the electrodes).

Figure 10 illustrates the effect of mass transport upon
radial thermal flux in the median plane. We can observe
the decrease of this quantity near the wall when the
radius increases. Note that the thermal energy losses are
practically proportional to the radial thermal flux at the
wall. So when the tube radius increases, convection tends
to thermalize the peripheral region of the plasma. Thus, the
temperature gradient near the wall decreases in turn hence
leading to a decrease in the thermal losses. Moreover, when

Figure 9. The calculated temperature field for two different
arc tube diameters: (a) d = 1 cm and (b) d = 3 cm.

the radius becomes sufficiently high, the arc shows a free-
burning character (Lowke 1979). This observation can be
illustrated by figure 11 which shows the temperature profile
for different arc tube diameters. It is clearly shown that the
temperature profile in the case of 3 cm arc tube diameter
is quite similar to that of a free-burning arc.

In figure 12 we give the Reynolds number calculated by
our model as a function of arc tube diameter. This variation
can be approximated byc3d

4, wherec3 is a constant equal
to 0.557 cm−4 and d is the tube diameter in centimetres.
Again, if we assume that this formula remains valid for
higher arc tube diameters, the flow becomes turbulent for
an arc tube diameter value of 7 cm.

The amount of mercury accumulated in the regions
behind both electrodes as a function of the square of arc
tube diameter is given in figure 13. We observe that an
increase in arc tube diameter leads to an increase in the
amount of mercury in these regions. So, a small radius
leads to a reduction in this mercury loss. However, the arc
tube radius should be high enough to keep the thermal loss
relatively low.

4. Conclusion

The aim of this paper was to study the influence of arc
external parameters on transport phenomena resulting in
convection flow in high-pressure mercury discharge lamps.
After validation, the retained model was applied to the
description of the high-pressure mercury discharge.

758



Convective flow in high-pressure mercury lamps

Figure 10. The radial component of thermal flux versus
tube diameter; the tube diameter was varied from d = 1 cm
(curve A) to d = 3 cm (curve B) by steps of 0.5 cm.

Figure 11. The dependence of the temperature profile
upon the tube diameter; the tube diameter was varied from
d = 1 cm (curve A) to d = 3 cm (curve B) by steps of
0.5 cm.

It was found that stable laminar mono-cellular
convection flow occurs at low values of tube diameter for a
cylindrical burner and/or a low mercury charge. However,
as is known, the Reynolds number increases with tube
diameter and/or mercury pressure, thus a turbulent flow
will appear up to a critical value (mcr

Hg = 150 mg/cm and
Rcr = 7 cm). In the proximity of this critical value,
a more complex multi-cellular convection flow pattern
may occur (Fohl 1975). In the case of a wall-stabilized
discharge the convection losses are a small fraction of the
total amount of energy in the discharge. However, it is

Figure 12. The Reynolds number as a function of the tube
diameter.

Figure 13. The variation in the amount of mercury trapped
in the electrode regions as a function of the tube diameter:
(N), higher electrode region and (�), lower electrode region.

recognized that, in some cases, convection could affect
some discharge performances. Finally, we focused much
attention on the region behind the electrodes where an
accumulation of mercury is observed. The evaluation of
this amount of mercury ‘trapped’ in these regions is of
prime importance for a good description of the mercury
distribution in the burner and for a correct evaluation of
total discharge pressure.
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